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Non-Mathematical Explanation

“quasi-incompressible fluid + reaction front⇒ instability”
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Darrieus’ and Landau’s Analysis (1930’s and 40’s)

Imagine a flame in the x-y plane. Assuming

I The flame is infinitely thin
I Fluid satisfies Euler equations on either side of the flame
I Flame expands the volume by the factor R
I Local flame speed is s0

I Flame location is y = c exp(ωt) cos(kx)

then

ωLD =

√
R3 +R2 −R−R

R+ 1
s0 k

Since ωLD > 0 whenever R > 1, the instability is unconditional.
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Markstein’s Analysis (1951)
Assuming as before, except

I Local flame speed is s = s0(1− Lκ)

then

ωMa =

√
R3(1− 2Lk) +R2(1 + L2k2)−R−R(1 + Lk)

R+ 1
s0 k .

In this case ωMa > 0 only when

R > 1 and L < 0 and k < kc , where kc =
R− 1
2LR

.

Corresponding to the critical wavenumber kc is the critical
wavelength λc = 2π/kc above which amplification occurs.
So, more realistically, only perturbations with sufficiently long
wavelengths are predicted to be unstable.
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Specific Methane-Air Flame

mechanism DRM19

φ 0.8

α0 2.24 cm2/s
L

Le 0.96
Pr 0.72
R 6.68
s0 29.27 cm/s
T0 300 K
Ta 17207 K
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Dispersion Relation
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Dispersion Relation with Respect to Wavelength
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Kuramoto-Mickelson-Sivashinsky Equation (1977)
Thermo-diffusive instability discovered by Zeldovich (1944):

I Analyzed by Zeldovich, Barenblatt, and Sivashinsky
I Assuming R = 1 (“constant density approximation”)
I Instability requires Le < Lec < 1

Sivashinsky (1977) combined -diffusive and -expansive effects:
I Assuming R ≈ 1 (“weak thermal limit”)
I Assuming Le ≈ Lec

I For R = 1 there is a nonparametric evolution equation,
the K-M-S equation, with dozens of physical applications

I For R 6= 1 and Le = 1 another nonparametric equation
describes the purely hydrodynamic instability

∂u
∂τ

=
∂2u
∂ξ2 −

1
2

(
∂u
∂ξ

)2

+
1

2π

∫ ∞
0

∫ ∞
−∞

k u(x , τ) cos k(ξ−x) dx dk
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More Realistic Assumptions (1982)
Three papers

1. Pelce and Clavin
2. Matalon and Matkowsky
3. Frankel and Sivashinsky

I Assuming one irreversible reaction
I Assuming no restrictions on Le and R
I All found viscosity has no effect
I All have different notation and nondimensionalizations

ωFS =

p
R3 +R2 −R−R

R+ 1
s0 k +

2664R
2 log

„
R2+2

√
R3+R2−R+1
R2(R+1)

«
− (R− 1)2

2(R− 1)
p
R+ 1−R−1

+
R
“p
R3 +R2 −R+R+ 2

”
+
p
R+ 1−R−1 − 1

2(R+ 1)2
p
R3 +R2 −R

Li2(1−R)
Ta

T0
(Le− 1)

35α0 k2

F & S predict unrealistically small λc = 0.079 cm
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Matalon, Cui, and Bechtold (2003)

New analysis
I Assuming properties vary through the flame zone
I Viscous terms do not drop out

ωMCB =

p
R3 +R2 −R−R

R+ 1
s0 k

−

24R
“

3R3 +R2 + 4
p
R3 +R2 −RR+R− 1

”
4(R+ 1)

p
R3 +R2 −R

+
Ta

T0
(Leeff − 1)

(R− 1)2
“p
R3 +R2 −R+ 1

”“
R2 +

p
R3 +R2 −R

”
2R(R+ 1)2

p
R3 +R2 −R

+ Pr
(R− 1)2R

2
p
R3 +R2 −R

#
α0 s0 k2

M C & B predict realistic λc = 0.48 cm
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DNS Requirements to Study Natural Flames
1. Spatial resolution requirement:

13 points through the flame zone.

flame zone thickness 0.2 mm⇒ spatial resolution ∆x ≈ 15µ

2. Temporal duration requirement:
The flame must traverse, chemically, a significant distance

to reveal its natural behavior.

total time =
60× thermal thickness 0.5 mm

flame speed 29 cm/s
= 0.1 sec

3. Temporal resolution requirement (CFL stability condition):

∆t < 0.5× ∆x
fastest speed in simulation

4. Number of time steps required

N =
total time

∆t
>

0.2 fastest speed
∆x

= 13,500× fastest
speed (m/s)
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Traditional DNS versus low Mach number DNS

time steps N = 13,500 × fastest speed in simulation(m/s)
traditional DNS = . . .× sound speed at 2000 K = 10,400,000

low Mach-number = . . .× hot gas velocity = 27,500

A flame must traverse a significant distance, as a result of
chemical reactions, to reveal its natural behavior.

This work uses the low Mach-number combustion software
developed at Lawrence Berkeley National Laboratory (LBNL).

I low Mach-number formulation
I adaptive mesh refinement (AMR)
I mixture-averaged transport without cross-diffusion

implemented by Day and Bell (2000)
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Computational Setup

initial fuel mass
consumption

Freely propagating 2D flame
I CH4-Air with φ = 0.8
I No gravity
I No radiation losses
I Widths 0.4, 0.8, and 1.2 cm
I 0.1+ seconds duration

I Initially randomly wrinkled flame
I Bottom inflow controlled to hold

flame stready
I Side boundaries periodic
I Aspect ratio height:width = 5 : 1
I Controlled inflow
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Movies

0.4 cm

0.8 cm

1.2 cm
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Flame Speed
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Fuel Consumption Isotherm
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Velocity
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Vorticity
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Pressure
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Summary

I Theory has evolved to the point that Matalon et al (2003)
appear to give quantitatively correct predictions

I The non-mathematical explanation of Landau appears to
most accurately describe the instability

I Contrary to previous simulations, the flame appears not
susceptible to “jitters” once it assumes the canonical
shape.

I As the simplest nontrivial flame, it may be used to test
many theorized relationships. Suggestions welcome.
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